Protein oxidative damage in the hippocampus in a mouse model of acute hyperammonemia

نویسندگان

  • Jasmin Klose
  • Boris Goerg
  • Carsten Berndt
  • Dieter Häussinger
  • Orhan Aktas
  • Tim Prozorovski
چکیده

Hepatic encephalopathy (HE) is a common neuropsychiatric complication of both chronic and acute liver failure that is characterized by psychomotor, intellectual and cognitive impairment [1]. The mechanism of neuronal dysfunction in HE has not yet been conclusively investigated and possibly implies numerous pathological processes. It is widely accepted that among the factors contributing to HE, hyperammonemia, due to ammonia dysmetabolism and inflammation as a response to infection, play a major role in the pathogenesis. A growing body of evidence, e.g. RNA oxidation and protein nitrosylation, further indicate that oxidative stress occurs in neural cells as a result of ammonia intoxication and may lead to subsequent tissue damage [2,3]. Particular interest of this study was to elucidate the effect of an acute ammonia load on protein homeostasis in the hippocampus, the brain area of learning, memory formation and consolidation. To this end we analysed the accumulation of oxidized proteins, protein ubiquitination, proteasome activity and expression of immunoproteasome subunits after a single intraperitoneal injection of NH4Ac (10 mmol/kg body weight) in 6 weeks old C57B/6 mice. Following ammonia administration the animals fall into coma with a survival rate of 10%. After approximately one hour of coma, the motor ability and reflexes were restored. To analyse whether ammonia intoxication has a delayed effect on CNS tissue, animals were sacrificed 24 hours post injection, perfused with PBS and hippocampi were dissected. Western blot detection of protein carbonylation by OxiBlot technique revealed a significant accumulation of oxidized proteins in the hippocampus of animals with ammonia-precipitated encephalopathy compared to the saline-treated control group. Involvement of oxidative stress in disturbed protein homeostasis was further supported by detection of increased expression of the antioxidant enzymes hemeoxygenase 1 (HO1) and thioredoxin 1 (Trx1). Similar to the animal model used in this study, up-regulation of HO-1 has been previously described in CNS tissue of patients with HE [4]. Moreover we found that protein oxidation was associated with elevated levels of ubiquitinated proteins and activation of proteasome (chemotrypsin-like) activity, representing the major cellular machinery for degradation of misfolded or damaged proteins. These data indicate that the ubiquitin-proteasome system may play an important role in the cellular response to ammonia-induced protein damage. To analyse whether hyperammonemia has a direct effect on neural cells, in an in vitro approach we exposed mixed glial cultures and the BV2 microglial cell line to 5 mM NH4Cl. Here, comparable to our findings in animals with ammonia-induced encephalopathy, 24 hours treatment increased the total amount of oxidized and ubiquitinated proteins, proteasome activity and expression of antioxidant enzymes. Notably, ammonia-induced protein damage was associated with a diminished functional role of microglia in terms of myelin debris clearance as it was observed using a myelin phagocytosis assay. Treatment with the antioxidant compound N-acetylcysteine rescued the effect of ammonia on impaired myelin engulfment and accumulation of ubiquitinated proteins. Taken together, our data show that ammonia intoxication induces protein oxidation in hippocampal tissue. This result corresponds to findings of other groups indicating impaired long-term potentiation in the hippocampus of animals with hyperammonemia and impaired cognitive function. We observed that an alteration of the protein homeostasis may persist longer after initial onset of neurological deterioration and thus, may contribute to * Correspondence: [email protected] Department of Neurology, Heinrich Heine University, 40225 Düsseldorf, Germany Full list of author information is available at the end of the article Klose et al. European Journal of Medical Research 2014, 19(Suppl 1):S29 http://www.eurjmedres.com/content/19/S1/S29 EUROPEAN JOURNAL OF MEDICAL RESEARCH

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protective Effect of Safranal, a Constituent of Crocus sativus, on Quinolinic Acid-induced Oxidative Damage in Rat Hippocampus

Objective(s): Quinolinic acid (QA)-mediated excitotoxicity has been widely used as a model for studying neurodegenerative disorders. Recent studies suggested that saffron (Crocus sativus) or its active metabolite, i.e. safranal, exerts pharmacological actions on central nervous system including anxiolytic, anticonvulsant, and neuroprotective properties. The present study aimed to investigate th...

متن کامل

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

Cholinergic neuropathology in a mouse model of Alzheimer's disease

Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...

متن کامل

Assessment of oxidative stress parameters of brain-derived neurotrophic factor heterozygous mice in acute stress model

Objective(s): Exposing to stress may be associated with increased production of reactive oxygen species (ROS). Therefore, high level of oxidative stress may eventually give rise to accumulation of oxidative damage and development of numerous neurodegenerative diseases. It has been presented that brain-derived neurotrophic factor (BDNF) supports neurons against various neurodegenerative conditio...

متن کامل

Vitamin D3 attenuates oxidative stress and cognitive deficits in a model of toxic demyelination

Objective(s):Multiple sclerosis (MS) is a demyelinating disease. The prevalence of MS is highest where environmental supplies of vitamin D are low. Cognitive deficits have been observed in patients with MS. Oxidative damage may contribute to the formation of MS lesions. Considering the involvement of hippocampus in MS, an attempt is made in this study to investigate the effects of vitamin D3 on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2014